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Results of numerical and experimental study of the heat exchange process are con- 
sidered as applied to the calculation of helical heat exchangers operating under 
conditions of unavoidable formation of the solid phase of the heat carrier in 
the intertube space. Based on the developed physical model of uniform icing, 
the system of differential equations that describes heat exchange in a two-flow 
apparatus is integrated. Comparison of the results obtained and experimental 
data shows that there is a limitation on the application of the model of uni- 
form icing. 

Heat transfer process in media involving a change in the phase state, which are wide- 
spread in cryogenics, power engineering, metallurgy, and other fields, are described b F the 
Stefan class of problems. In a classical definition, i.e., under the assumption of th~ ab- 
sence of convection and under the assumption of constant thermophysical properties of liquid, 
the law of motion of the liquid-ice boundary in time is determined by solving the syst,~m of 
equations of heat conduction with nonlinear boundary conditions. The basis methods of solv- 
ing such problems are classified and represented most completely in [i]. It should be noted 
that when constructing a solution, the heat transfer coefficient on the ice-liquid boundary 
for most practical cases is selected on the basis of known empirical dependences to be equal 
to the coefficient for a "clean" surface [2, 3]. Whether it is correct to assume that heat 
exchange processes on the ice-liquid boundaries and "clean" surface-liquid boundaries are 
adequate requires thorough experimental verification. 

Therefore, there exists another side of the known Stefan problem: determining heat trans- 
fer on the ice-liquid boundary (or determiing boundary conditions of the third kind in the 
Stefan problem). Apparently, the given problem can be formulated as a quasi-stationary prob- 
lem on finite time intervals. 

This approach allowed us to develop the technique of calculating spiral tube casir~g heat 
exchangers with account of the formation of ice on separating walls of channels [4] ba~:ed 
on a physical model of uniform icing. In constructing the model the following main assump- 
tions have been accepted: the thickness of icing is the same over the perimeter of a tube 
and is uniform over the layers of the heat exchanger; the temperature on the phase bourdary 
is constant and equals Tf; heat transfer on the ice-liquid boundary and the liquid-"clean" 
surface boundary are adequate. 

The given design model is physically justified if we neglect a certain nonuniformity 
in the distribution of the coefficient of heat transfer over the perimeter of a separate tube. 

From the condition that the process is quasistationary, i.e., form the condition of equal- 
ity of heat flows directed from the cooling agent through the iced wall to the cooled flow 
over finite time intervals, the thickness of the ice "crust" 6 i in the i-th cross-section is 
determined as the root of the transcendental equation: 
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Fig. 2. Visualization model. 
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It should be noted that Eq. (i) is a known form of the equation for the surface tempera- 
ture of a multiple-layer cylindrical wall. 

Heat exchange in the spiral heat exchanger is described by the system of ordinary dif- 
ferential equations of the first order 

d T ~  _ 1 K~ (T, - -  TD, d T ~  _ 1 K~ (T., - -  TO, ( 2 )  
dx cmG 1 dx Cp2G2 

ap__!~ = cos (qo) w~ 

Ax t ~ T7 

The s y s t e m  was s o l v e d  by t h e  R u n g e - K u t t a  method w i t h  t h e  f o l l o w i n g  bounda ry  c o n d i t i o n s :  

Till for cplG 1 ~ O, 

T ~ ( 0 ) =  TO ~ for cv~G~<0, (3)  

T2 (0) = ]rout (4)  
t 2 for cp'zO~ < O, 

Ap~ (o) = o. 
(5) 

Integration was considered complete after the value x = H had been reached. 

An analysis of the numerical solution has shown that throughout the entire studied range 
of the Reynolds numbers, heat transfer toward the surface of the tube is lower than that repre- 
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Fig. 3. Comparison of experimental and calculated data on 
heat transfer (a) and on hydraulic resistance (b): 1) gener- 
alized dependence of A. Zhukauskas [5]; 2) calculation from 
the model of uniform icing; 3) experimental data (open circles, 
@ = 0.071-0.091, filled circles, @ = 0.056-0.064). On the 
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sented in [5]. This is due to the additional thermal resistance of the ice "crust." i{ow- 
ever, the formation of ice results also in an increase of velocity in the intertube space 
and, consequently, in an increase of heat transfer from the liquid to the ice surface. The 
interaction of these two factors determined the deviation in the calculated curve [5]. It 
should be noted that the outer diameter of the "clean" tube was chosen as a characteristic 
size for the convenience of comparison of Nu and Re criteria. The heat transfer coeff:.cient 
entering into the Nu criterion was determined from dependence (8), where the calculated value 

was assumed to be an average value of the wall temperature Tw in the presence of ice, while 

the average value of the liquid temperature T 2 was taken as: 

- ! ~ '  ~ , .  ( 7 )  Y.~ 

In accordance with given assumptions the calculation of the heat transfer coefficient 
on the ice-liquid boundary ~2i is realized as in [5]. 

The experimental plant represented a hydrodynamic outline of open type, in which circu- 
lating water was used as a heat carrier and the air under high pressure (-15 MPa) was first 
cooled in a bath with liquid nitrogen (Fig. i). After a horizontal region of hydrodynamic 
stabilization, the water was directed into the visualization model which represented a rec- 
tangular channel bounded by plane walls made of plexiglas and packed with a bank of tube- 
cylinders (Fig. 2). Altogether, in a channel with a cross-section of 130 • 80 mm there were 
three layers with 6 cylinders in each layer. The outer cylinder diameter was 36 mm, the inner, 
6 mm, the relative interval of spacing 1.2 both in the longitudinal and transverse directions, 
the distance between the first (last) layer and the cap being equal to half the distance be- 
tween the cylinders. Tube-cylinders were made of brass, their surface was chromized. The 
inner caviities were connected as shown in Figs. 1 and 2, forming a flow chart for the heat 
carriers close to countercurrent. The experimental model, therefore, was a geometric dupli- 
cate of the coil region of the spiral heat exchanger. In the upper part of each tube of the 
middle layer, starting from the end of the cylinder, at a distance 0.5 mm from the outer surface 
and ~20 mm in depth, holes were drilled with a diameter of 1 mm, in which were placed thermo- 
couples. Temperature was also controlled by using resistance thermometers (Fig. i). When 
stable values of temperatures were achieved, the entire plant was considered to be in a sta- 
tionary regime. Transfer from one regime to another one was realized by changing the water 
flow rate G 2. 

The average heat transfer was determined in the steady-state thermal regime. When proc- 
essing experimental data, the heat transfer coefficient was calculated from the following 
formula: 
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The p l a n t  was a d j u s t e d  when s t udy ing  hea t  t r a n s f e r  of  t he  tube  bank in  t he  absence  of  
s u r f a c e  i c i n g .  Expe r imen ta l  da t a  on hea t  t r a n s f e r  in  " c l e a n "  regimes were in  s a t i s f a c t o r y  
agreement  wi th  t he  g e n e r a l i z e d  dependence of  Zhukauskas [5 ] .  The maximum d e v i a t i o n  d id  no t  
exceed  12% in  t he  range  o f  v e l o c i t i e s  under  i n v e s t i g a t i o n ,  which a t t e s t e d  to  t he  r e l i a b i l i t y  
of the experimental data obtained. For determining the average heat transfer, th_e thermo- 
physical properties of water were chosen based on the arithmic mean temperature T 2 in cor- 
respondence with [6] . 

An analysis of experimental data has shown that there is a possibility for the existence 
of two principally different groups of regime parameters, determining heat transfer and re- 
sistance in the bank of tubes (Fig. 3). Experimental data related to one group of regimes 
deviate slightly from [5]. Apparently, the formation of a thin crust of ice is followed in 
this case by a simultaneous increase in velocity, which results in a certain peculiar com- 
pensation of losses in the intensity of heat transfer. Experimental data for the other group 
of regimes shows that there exists a region of parameters with considerably worse heat trans- 
fer (a reduction of practically an order of magnitude is possible). Apparently, these regimes 
correspond to a more complicated picture of the ice formation in the intertube space than 
for the regimes of the first group. It is likely that with a decrease in the Reynolds numbers 
the influence of natural convection increases, which leads to the thermal stratification in 
the liquid flow, and, as a consequence, to the strong nonuniformity of ice formation over 
the tube layers. The experimental data obtained was compared with the numerical solution 
of Eqs. (2) in the framework of the presented phsyical model of uniform icing. An analysis 
of such a comparison shows that there exists a region of good agreement in experimental and 
calculated data. Deviation from the calculated curve was due to errors of the experiment 
and did not exceed 15%. Such agreement is characteristic of the experimental data of the 
first group. 

Comparison of the calculated and experimental data for the second group of regime pa- 
rameters shows that there exists a region where deviation of experimental data from the cal- 
culated curve is 80% and more. 

Results of the conducted analysis correspond to the data of visual observations. Thus 
the form of frosted ice close to uniform (both over the perimeter of a separate tube and over 
the layers of the model) corresponds to the regimes of the first group. The application of 
the physical model of the uniform icing and the choice of calculated dependences for the 
intertube heat transfer in correspondence with [5] in this case seems to be justified. 

Regimes of the second groupwere characteristic of a nonuniform formation of ice over the 
layers and possible closing-up of the lower and middle layers. This can explain the degrada- 
tion in heat transfer and the sharp increase in the hydraulic resistance. An attempt to de- 
scribe such a process with the help of the model of uniform icing yields large errors, dis- 
crediting accepted assumptions. 

Therefore, there is a limitation on the application of the model of uniform icing of 
the bank of tubes in the transverse flow. Comparison of the experimental and calculated data 
shows that the region of application is determined by the value Gr/Re 2 < 0.04 for the studied 
range of Reynolds number Re = 8,00-1800 and Gr = 10s-107. 

NOTATION 

x, coordinate alohg the length of the heat exchanger (model); H, the length of winding 
of the heat exchanger (maximal value of x); dl, inner diameter of the tube; d=, outer diam- 
eter of the "clean" tube; T(x), flow temperature; Tf, phase transition temperature; ~(x), 
heat-transfer coefficient; Fc, "clean" surface of heat exchange for the experimental model; 
~, slope of winding with respect to the diametral plane; t, diametral winding pitch; 6, volu- 
metric expansion coefficient; K~(x)= ((~S~)-~+ln(d2/d~)(d2/2SO/~+ln(d/d2)(d,/2&)/~+(~)-~) -1 , heat-transfer 
coefficient per unit length; S(x), surface of heat exchange per unit length; w, flow velocity; 
G, flow rate; Ap(x), hydraulic resistance; g(x), coefficient of hydraulic resistance; n, number 
of integration intervals; Cp(X), 0(x), ~(x), and %(x), heat capacity, density, viscosity, 
and heat conduction, respectively; Gr(x)=9,81~p~T2--T~)d~/~ ~, Nu(x)=~d/~, Re(x)=wgd/~, Eu(x)=2Ap/(p~2), 
and P r ( x )  = Cp~/X, Grashof ,  N u s s e l t ,  Reynolds ,  E u l e r ,  and P r a n d t l  numbers,  r e s p e c t i v e l y ;  
d(x) = d 2 + 2~, outer tube diameter together with the "curst" of ice; O = T} n - Tf)/(Tj - 
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Tin); relative temperature head. Indices: i, tube space; 2, intertube space; w, wali[; i, 
ice; in, out, parameters corresponding to the input and output of the heat exchanger (model). 
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FLOW AND HEAT TRANSFER IN A NONSTEADY JET GENERATED 

BY LARGE-AMPLITUDE GAS OSCILLATIONS 

R. G. Galiullin and E. I. Permyakov UDC 532.525.2:534.242:536.24 

The problem of the velocity field in a jet formed by nonlinear oscillations in 
a tube is solved. Equations are derived that describe heat transfer to a body 
placed at the jet axis. These relationships are tested experimentally. 

Jet flows of an incompressible fluid and a gas comprise one of the best developed fields 
of boundary-layer science. The importance of this branch of knowledge is due to the wzde 
prevalence of jet flows in nature and engineering. An entire class of jet flows exists, how- 
ever, that has hardly been investigated up to now, namely, nonsteady jets. Such jets c~an 
be produced using a generator of large-amplitude oscillations, which consists of a resonance 
tube, one end of which is open and communicates with the ambient medium, and at the other 
end of which a flat piston moves harmonically [i]. Upon the excitation of oscillations in 
the tube, a nonsteady jet is formed at its open end, with the amplitude of velocity oscfflla- 
tions in the jet reaching 160 m/sec near resonance. Another way of generating a high-velocity 
nonsteady jet has been described in [2]. 

The high amplitude of the velocity pulsations makes it possible to use the generated 
jet to investigate heat transfer between bodies and oscillating flows in a wide range cf varia- 
tion of the oscillatory Reynolds number Reos c and the Strouhal number Sh. Heat transfs be- 
tween bodies and this jet is also interesting because the velocity oscillations in it are 
anharmonic: the spectrum of velocity oscillations contains a constant component and a number 
of harmonics [3, 4]. 

In this paper we attempt to investigate the velocity field in a nonsteady jet generated 
at the open end of a pipe during nonlinear gas oscillations in it, as well as heat transfer 
for bodies (a cylinder, sphere, and disk) placed at the jet axis. 

To solve the hydrodynamic part of the problem, we used the law of conservation of nomen- 
tum [5], which in the case of a nonsteady jet takes the form 

Ot . ~ ru~dr = O. ( 1 ) 

0 0 

We assume that the axial velocity u can be represented as a sum u = ua + ul + u2, where u 0 
is the time-averaged component and u I and u 2 are the first and second harmonics, with u~ = u0 
and u 2 << u I. After substituting u into (i) and averaging over time, we obtain 

V. I. Ul'yanov-Lenin Kazan' State University. 
Zhurna!, Vol. 58, No. 5, pp. 747-752, May, 1990. 
1989. 

Translated from Inzhenerno-Fiziches1~ii 
Original article submitted February 16, 

0022-0841/90/5805-0571512.50 �9 1990 Plenum Publishing Corporation 571 


